Accelerating MCMC for UQ in Imaging Science by Relaxed Proximal-point Langevin Sampling

Teresa Klatzer ${ }^{1,4}$

with
P. Dobson ${ }^{1,4}$, K. Zygalakis ${ }^{1,4}$, M. Pereyra ${ }^{2,4}$, Y. Altmann ${ }^{2}$, J.-M. Sanz-Serna ${ }^{3}$
${ }^{1}$ University of Edinburgh ${ }^{2}$ Heriot-Watt University ${ }^{3}$ Universidad Carlos III de Madrid ${ }^{4}$ Maxwell Institute for Mathematical Sciences

Mini-symposium MS210

Overview

(1) Introduction

- Inverse problems in imaging
- Bayesian paradigm
- Goals for this work
- Quantities of interest
(2) Implicit Langevin algorithm
- Langevin dynamics
- Proposed algorithm
- Convergence analysis
(3) Numerical results
- Poisson deconvolution
- Image deconvolution using a CRR-NN prior
(4) Summary and conclusions

Overview

(1) Introduction

- Inverse problems in imaging
- Bayesian paradigm
- Goals for this work
- Quantities of interest
(2) Implicit Langevin algorithm
- Langevin dynamics
- Proposed algorithm
- Convergence analysis
(3) Numerical results
- Poisson deconvolution
- Image deconvolution using a CRR-NN prior
(4) Summary and conclusions

Inverse problem in imaging

Reality x

imaging Device

- Estimate the unknown image $x \in \mathbb{R}^{d}$ from an observation $y \in \mathbb{R}^{p}$
- Forward statistical model: $y \sim \mathcal{N}\left(A x, \sigma^{2} \mathbb{I}_{p}\right)$ or $y \sim \mathcal{P}(A x, \beta)$
- Observation operator $A \in \mathbb{R}^{p \times d}$ is often rank-deficient or $A^{T} A$ has a poor condition number $\kappa \gg 1$
- Introduce regularisation \rightarrow well-posed inverse problem

$$
x^{*}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f_{y}(A x)+\lambda g(x)
$$

Bayesian methodology for solving inverse problems

Using a prior distribution $p(x)$ for regularisation and the likelihood $p(y \mid x)$ we can define the posterior distribution

$$
\pi(x):=p(x \mid y)=\frac{p(y \mid x) p(x)}{\int_{\mathbb{R}^{d}} p(y \mid x) p(x) d x}
$$

We consider the unnormalised posterior

$$
\pi(x) \propto p(y \mid x) p(x)=e^{-U(x)}=e^{-f_{y}(x)-g(x)}
$$

Options for regularisation g

- Assumption-driven (e.g. TV, TGV, ...)
- Data-driven (e.g. convex neural networks)

Goals for this work

- We want to use Bayesian methodology for scientific imaging applications where uncertainty quantification is required
- E.g. in low photon imaging, challenging noise and limited ground truth available
- Design an algorithm that converges at the order of $\sqrt{\kappa}$ iterations similar to accelerated optimisation schemes

Requirements

We require convexity of f_{y} and g (and therefore log-concavity of $\pi(x)$), because
(1) Convexity guarantees the well-posedness of $\pi(x):=p(x \mid y)$ and of posterior moments of interest
(2) Convexity allows convergence analysis of the Bayesian computation methods: faster convergence rates, tighter non-asymptotic bounds, and stronger guarantees on the delivered solutions.

Example: Poisson deconvolution

The posterior distribution $\pi(x)$ is modelled using a Poisson likelihood $y \sim \mathcal{P}(A x, \beta)$ and a Moreau-Yosida smoothed TV regulariser (see Melidonis et al. (2023)):

$$
\pi^{\lambda}(x) \propto \exp \left(-\sum_{i=1}^{d}\left[(A x)_{i}+\beta-y_{i} \log \left((A x)_{i}+\beta\right)+\iota_{(A x)_{i} \geq 0}\right]\right.
$$

$$
\left.-\theta_{\mathrm{TV}^{\lambda}} \mathrm{TV}^{\lambda}(x)\right)
$$

True image x

Observation y

Figure: True image x and observation y, MIV=10 Poisson noise and 5×5 box blur

Quantities of interest

Starting point

Given a model for the posterior distribution $\pi(x)$ for our imaging problem, we are now interested in calculating the following quantities:

Quantities of interest

Starting point

Given a model for the posterior distribution $\pi(x)$ for our imaging problem, we are now interested in calculating the following quantities:

- $\mathbb{E}_{\pi}(f):=\int_{\mathbb{R}^{d}} f(x) \pi(x) d x$ (can be computed using a Markov Chain Monte Carlo sampling algorithm)

Quantities of interest

Starting point

Given a model for the posterior distribution $\pi(x)$ for our imaging problem, we are now interested in calculating the following quantities:

- $\mathbb{E}_{\pi}(f):=\int_{\mathbb{R}^{d}} f(x) \pi(x) d x$ (can be computed using a Markov Chain Monte Carlo sampling algorithm)
- $\mathbb{E}_{\pi}(x):=\int_{\mathbb{R}^{d}} x \pi(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} X_{i}$
\rightarrow Minimum mean square error (MMSE)

Example: Poisson deconvolution

Figure: Quantities of interest: $x_{\text {MMSE }}$ and standard deviation

Reminder: Acceleration in convex optimisation ${ }^{1}$

Let f a L-smooth and m-strongly convex function with conditioning number $\kappa=L / m$

Reminder: Acceleration in convex optimisation ${ }^{1}$

Let f a L-smooth and m-strongly convex function with conditioning number $\kappa=L / m$

Accelerated Gradient Descent (AGD), Nesterov 2004

Set a point $x_{0}=y_{0}$, iterate for $k \geq 0$

$$
\begin{gathered}
y_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right) \\
x_{k+1}=y_{k+1}+\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\left(y_{k+1}-y_{k}\right)
\end{gathered}
$$

${ }^{1}$ Some inspiration drawn from Sébastien Bubeck's blog

Reminder: Acceleration in convex optimisation ${ }^{1}$

Let f a L-smooth and m-strongly convex function with conditioning number $\kappa=L / m$

Accelerated Gradient Descent (AGD), Nesterov 2004

Set a point $x_{0}=y_{0}$, iterate for $k \geq 0$

$$
\begin{gathered}
y_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right) \\
x_{k+1}=y_{k+1}+\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\left(y_{k+1}-y_{k}\right)
\end{gathered}
$$

To reach ϵ accuracy, GD requires $\mathcal{O}(\kappa \log (1 / \epsilon))$ iterations while AGD needs $\mathcal{O}(\sqrt{\kappa} \log (1 / \epsilon)) \rightarrow$ acceleration!
${ }^{1}$ Some inspiration drawn from Sébastien Bubeck's blog

Overview

(1) Introduction

- Inverse problems in imaging
- Bayesian paradigm
- Goals for this work
- Quantities of interest
(2) Implicit Langevin algorithm
- Langevin dynamics
- Proposed algorithm
- Convergence analysis
(3) Numerical results
- Poisson deconvolution
- Image deconvolution using a CRR-NN prior
(4) Summary and conclusions

MCMC methods to sample from $\pi(x)$

To construct our sampling algorithm, we consider the overdamped Langevin stochastic differential equation (SDE)

$$
d X_{t}=\nabla \log \pi\left(X_{t}\right) d t+\sqrt{2} d W_{t}
$$

MCMC methods to sample from $\pi(x)$

To construct our sampling algorithm, we consider the overdamped Langevin stochastic differential equation (SDE)

$$
d X_{t}=\nabla \log \pi\left(X_{t}\right) d t+\sqrt{2} d W_{t}
$$

We aim for a discretisation that

- Allows us to take time-step arbitrary large (stability)
- The numerical invariant distribution $\tilde{\pi}$ is close to the posterior π (asymptotic bias)

Discretisations of the Langevin equation: θ-method

We consider a θ-method to solve the Langevin SDE for $\theta \in[0,1]$

$$
X_{n+1}=X_{n}+\delta \nabla \log \pi\left(\theta X_{n+1}+(1-\theta) X_{n}\right)+\sqrt{2 \delta} \xi_{n+1}
$$

Discretisations of the Langevin equation: θ-method

We consider a θ-method to solve the Langevin SDE for $\theta \in[0,1]$

$$
X_{n+1}=X_{n}+\delta \nabla \log \pi\left(\theta X_{n+1}+(1-\theta) X_{n}\right)+\sqrt{2 \delta} \xi_{n+1}
$$

A simple method is the unadjusted Langevin algorithm (ULA) ${ }^{2}$, when $\theta=0$

$$
X_{n+1}=X_{n}+\delta \nabla \log \pi\left(X_{n}\right)+\sqrt{2 \delta} \xi_{n+1}
$$

The step size for ULA is bounded by $\delta \leq 2 / L$ (same order as GD!).

Accelerating using explicit vs implicit methods

Possible solutions

- Use an implicit method (time step δ can be arbitrarily large)
- Explicit numerical schemes to improve on effective δ

Accelerating using explicit vs implicit methods

Possible solutions

- Use an implicit method (time step δ can be arbitrarily large)
- Explicit numerical schemes to improve on effective δ

Related work:

- Accelerating MCMC using an explicit stabilised method (SK-ROCK) Pereyra et al. (2020) can can overcome the stability limit $2 / L$ by factor s, authors recommended $s \in\{2, \ldots, 15\}$.

Accelerating using explicit vs implicit methods

Possible solutions

- Use an implicit method (time step δ can be arbitrarily large)
- Explicit numerical schemes to improve on effective δ

Related work:

- Accelerating MCMC using an explicit stabilised method (SK-ROCK) Pereyra et al. (2020) can can overcome the stability limit $2 / L$ by factor s, authors recommended $s \in\{2, \ldots, 15\}$.
- Related implicit schemes are Hodgkinson et al. (2021); Wibisono (2018). Our approach is well-posed for models that are not smooth, and has better non-asymptotic convergence bounds.

Proposed algorithm: Implicit Langevin Algorithm

 Recall the θ-method$$
X_{n+1}=X_{n}+\delta \nabla \log \pi\left(\theta X_{n+1}+(1-\theta) X_{n}\right)+\sqrt{2 \delta} \xi_{n+1}
$$

Proposed algorithm: Implicit Langevin Algorithm

Recall the θ-method

$$
X_{n+1}=X_{n}+\delta \nabla \log \pi\left(\theta X_{n+1}+(1-\theta) X_{n}\right)+\sqrt{2 \delta} \xi_{n+1}
$$

Using $\log \pi(x) \propto-U(x)$, our method is based on the following recursion

$$
\text { IMLA : } \quad X_{n+1}=\left(1-\frac{1}{\theta}\right) X_{n}+\frac{1}{\theta} \operatorname{prox}_{U}^{\delta \theta}\left(X_{n}+\theta \sqrt{2 \delta} \xi_{n}\right)
$$

Proposed algorithm: Implicit Langevin Algorithm

 Recall the θ-method$$
X_{n+1}=X_{n}+\delta \nabla \log \pi\left(\theta X_{n+1}+(1-\theta) X_{n}\right)+\sqrt{2 \delta} \xi_{n+1}
$$

Using $\log \pi(x) \propto-U(x)$, our method is based on the following recursion

$$
\text { IMLA : } \quad X_{n+1}=\left(1-\frac{1}{\theta}\right) X_{n}+\frac{1}{\theta} \operatorname{prox}_{U}^{\delta \theta}\left(X_{n}+\theta \sqrt{2 \delta} \xi_{n}\right)
$$

It is useful to express the recursion explicitly as minimization problem

$$
\begin{gathered}
X_{n+1}=\operatorname{argmin}_{x \in \mathbb{R}^{d}} F\left(x ; X_{n} ; \xi_{n+1}\right), \\
F\left(x ; X_{n} ; \xi_{n+1}\right)=\frac{1}{\theta} U\left(\theta x+(1-\theta) X_{n}\right)+\frac{1}{2 \delta}\left\|x-X_{n}-\sqrt{2 \delta} \xi_{n+1}\right\|^{2} .
\end{gathered}
$$

Implicit Midpoint Langevin Algorithm (IMLA): $\theta=1 / 2$
Recall $\log \pi(x) \propto-U(x)$

Algorithm IMLA

Require: $N \geq 0, \delta>0$ and $X_{0} \in \mathbb{R}^{d}$.

for $\mathrm{n}=0$: $\mathrm{N}-1$ do

Draw

$$
\xi_{n} \sim \mathcal{N}\left(0, I_{d}\right)
$$

Set

$$
X_{n+1} \leftarrow \arg \min _{x \in \mathbb{R}^{d}} 2 U\left(\frac{1}{2} x+\frac{1}{2} X_{n}\right)+\frac{1}{2 \delta}\left\|x-X_{n}-\sqrt{2 \delta} \xi_{n}\right\|^{2}
$$

end for $=0$

Convergence analysis for $\pi(x) \propto \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right)$

$$
W_{2}\left(\pi ; Q_{n}\right) \leq W_{2}(\pi ; \tilde{\pi})+C^{n} W_{2}\left(\tilde{\pi}, Q_{0}\right)
$$

Proposition (simplified)

Let Q_{n} be the probability distribution associated with the n-th iteration of the method starting at X_{0}.

Convergence analysis for $\pi(x) \propto \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right)$

$$
W_{2}\left(\pi ; Q_{n}\right) \leq W_{2}(\pi ; \tilde{\pi})+C^{n} W_{2}\left(\tilde{\pi}, Q_{0}\right)
$$

Proposition (simplified)

Let Q_{n} be the probability distribution associated with the n-th iteration of the method starting at X_{0}. Then the number of steps n required such that $W_{2}\left(\pi, Q_{n}\right)^{2}$ reaches ϵ accuracy is given by

$$
n \approx \frac{\sqrt{\kappa}}{2}\left[\log \left(W_{2}\left(\pi, Q_{0}\right)\right)-\log (\epsilon)\right] \text { for } \theta=\frac{1}{2}
$$

Convergence analysis for $\pi(x) \propto \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right)$

$$
W_{2}\left(\pi ; Q_{n}\right) \leq W_{2}(\pi ; \tilde{\pi})+C^{n} W_{2}\left(\tilde{\pi}, Q_{0}\right)
$$

Proposition (simplified)

Let Q_{n} be the probability distribution associated with the n-th iteration of the method starting at X_{0}. Then the number of steps n required such that $W_{2}\left(\pi, Q_{n}\right)^{2}$ reaches ϵ accuracy is given by

$$
n \approx \frac{\sqrt{\kappa}}{2}\left[\log \left(W_{2}\left(\pi, Q_{0}\right)\right)-\log (\epsilon)\right] \text { for } \theta=\frac{1}{2}
$$

with δ given by

$$
\delta=\delta_{*}=\frac{2}{\sqrt{L m}}=2 \sigma_{\min } \sigma_{\max } \quad \text { for } \theta=\frac{1}{2}
$$

IMLA: Algorithmic recommendations

(a) step size δ against κ

(b) number of steps n against κ

- Choosing $\theta=1 / 2$ leads to order of $\sqrt{\kappa}$ iterations for convergence
- For strongly log-concave posteriors $\delta=\delta^{*}=2 / \sqrt{L m}$ gives the optimal contraction rate

Overview

(1) Introduction

- Inverse problems in imaging
- Bayesian paradigm
- Goals for this work
- Quantities of interest
(2) Implicit Langevin algorithm
- Langevin dynamics
- Proposed algorithm
- Convergence analysis
(3) Numerical results
- Poisson deconvolution
- Image deconvolution using a CRR-NN prior
(4) Summary and conclusions

Recall: Poisson deconvolution

The posterior distribution $\pi(x)$ is modelled using a Poisson likelihood $y \sim \mathcal{P}(A x, \beta)$ and a Moreau-Yosida smoothed TV regulariser (see Melidonis et al. (2023)):

$$
\pi^{\lambda}(x) \propto \exp \left(-\sum_{i=1}^{d}\left[(A x)_{i}+\beta-y_{i} \log \left((A x)_{i}+\beta\right)+\iota_{(A x)_{i} \geq 0}\right]\right.
$$

$$
\left.-\theta_{\mathrm{TV}^{\lambda}} \mathrm{TV}^{\lambda}(x)\right)
$$

True image x

Observation y

Figure: True image x and observation y, MIV=10 Poisson noise and 5×5 box blur

Reflected IMLA

Algorithm R-IMLA

Require: $N \geq 0, \delta>0$ and $X_{0} \in \mathbb{R}^{d}$.
for $\mathrm{n}=0$: $\mathrm{N}-1$ do

Draw

$$
\xi_{n} \sim \mathcal{N}\left(0, I_{d}\right)
$$

Set

$$
\begin{gathered}
X_{n+1}^{i}=\left|\tilde{X}_{n+1}^{i}\right|, \quad \text { for all } i=1, \ldots, d, \\
\tilde{X}_{n+1} \leftarrow \arg \min _{x \in \mathbb{R}^{d}} 2 U^{\lambda}\left(\frac{1}{2} x+\frac{1}{2} X_{n}\right)+\frac{1}{2 \delta}\left\|x-X_{n}-\sqrt{2 \delta} \xi_{n}\right\|^{2}
\end{gathered}
$$

Posterior mean, $s=10$

Figure: Posterior mean. ILA using $\delta=6.65 e^{-5}$ equivalent to step size when $s=10$ for SKROCK, ULA using $\delta=1 / L$

Log of posterior standard deviation, $s=10$

Figure: ILA using $\delta=6.65 e^{-5}$ equivalent to step size when $s=10$ for SKROCK, ULA using $\delta=1 / L$

Autocorrelation comparison for $s=20$ and $s=40$

Figure: R-IMLA was run using $\delta=2.82 \times 10^{-4}$ (left), and $\delta=1.16 \times 10^{-3}$
(right) which is equivalent to the effective time step of R-SKROCK when $s=20$ or $s=40$, R-MYULA was run using $\delta=1 / L$.

Image deconvolution using a CRR-NN ${ }^{3}$ prior

$$
\pi(x) \propto \exp \left(-\frac{\|A x-y\|^{2}}{2 \sigma^{2}}-\frac{\lambda}{\mu} R_{\ominus}(\mu x)\right) .
$$

[^0]
Posterior means

Mean crr-nn IMLA 29.63dB

Mean crr-nn SKROCK 29.21dB

Mean crr-nn ULA 29.18dB

PSNR and convergence

Figure: Results for the castle image

Pixel standard deviation

Overview

(1) Introduction

- Inverse problems in imaging
- Bayesian paradigm
- Goals for this work
- Quantities of interest
(2) Implicit Langevin algorithm
- Langevin dynamics
- Proposed algorithm
- Convergence analysis
(3) Numerical results
- Poisson deconvolution
- Image deconvolution using a CRR-NN prior
(4) Summary and conclusions

Summary

- Proposed new MCMC methodology for imaging inverse problems that provably accelerate the convergence to (numerical) equilibrium (similar behaviour to Nesterov method for optimisation)
- Identification of optimal time step to maximise convergence speed
- Non-smooth objectives and constraints can be dealt with
- The method involves an implicit step: This can be more computationally efficient that current state of the art SKROCK

Paper "Accelerated Bayesian imaging by relaxed proximal-point Langevin sampling", 2024, to appear in SIAM Imaging Science

Preprint and link to code available at https://arxiv.org/abs/2308.09460

References

Durmus A., Moulines E., Pereyra M. Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau // SIAM J. Imaging Sci. 2018. 11, 1. 473-506.
Goujon A., Neumayer S., Bohra P., Ducotterd S., Unser M. A Neural-Network-Based Convex Regularizer for Inverse Problems // IEEE Trans. Comput. 2023. 9. 781-795.
Hodgkinson L., Salomone R., Roosta F. Implicit Langevin algorithms for sampling from log-concave densities // J Mach Learn Res. 2021. 22. 19-292.
Melidonis S., Dobson P., Altmann Y., Pereyra M., Zygalakis K. Efficient Bayesian Computation for Low-Photon Imaging Problems // SIAM J. Imaging Sci. 2023. 16, 3. 1195-1234.

Pereyra M., Vargas-Mieles L. A., Zygalakis K. C. Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method // SIAM J. Imaging Sci. 2020. 13, 2. 905-935.
Wibisono A. Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem // Proc. Mach. Learn. Res. 2018. 75. 2093-3027.

[^0]: ${ }^{3}$ Goujon et al. (2023)

